

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Approximate Quantal Calculations on the Predissociative Lifetimes of the Ne...Hal₂(X,v) (Hal = Cl,Br,I) Van Der Waals Complexes

A. A. Buchachenko^a; N. F. Stepanov^a

^a Department of Chemistry, Moscow State University, Moscow, Russia

To cite this Article Buchachenko, A. A. and Stepanov, N. F.(1992) 'Approximate Quantal Calculations on the Predissociative Lifetimes of the Ne...Hal₂(X,v) (Hal = Cl,Br,I) Van Der Waals Complexes', *Spectroscopy Letters*, 25: 2, 189 – 200

To link to this Article: DOI: 10.1080/00387019208020686

URL: <http://dx.doi.org/10.1080/00387019208020686>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**APPROXIMATE QUANTAL CALCULATIONS ON THE PREDISSOCIATIVE
LIFETIMES OF THE $\text{Ne...Hal}_2(X,v)$ (Hal = Cl,Br,I)
VAN DER WAALS COMPLEXES**

Key words: Vibrational predissociation, van der Waals complexes.

A. A. Buchachenko, N. F. Stepanov

**Department of Chemistry, Moscow State University,
Moscow 119899, Russia**

Abstract

Predissociative lifetimes of several ground-state neon-halogen van der Waals complexes are calculated by the simple two-dimensional model and empirical potential energy surfaces. A reasonable agreement with the experimental lifetime is found for Ne...Br_2 complex and the vibrational predissociation rates of Ne...Cl_2 and Ne...I_2 complexes are predicted.

I. INTRODUCTION

Vibrational predissociation (VP) of the van der Waals (vdW) complexes composed of the rare-gas atoms and halogene molecules were extensively studied since the pioneering works by Levy and co-workers^{1,2}. Experimental techniques based on an excitation of the $X \rightarrow B$ transition in the halogene fragment provided detailed information on the lifetimes of *B*-state vibrational levels of the complexes (see for a review Refs. 3,4). Such measurements stimulated theoretical investigations on the VP dynamics of electronically excited complexes. Among the methods applied to calculations of predissociative linewidths much attention was paid to the three-dimensional Fermi Golden Rule (FGR) approaches combined with different approximations to the initial (bound) and final (scattered) wavefunctions. In this framework there was reached a good agreement with spectroscopic data for several complexes such as $\text{He} \dots \text{Cl}_2^5$, $\text{Ne} \dots \text{Cl}_2^{6,7}$ and others.

However, much less is known about VP of the ground-state complexes in spite of their importance in energy transfer processes, spectroscopy of the halogene molecules seeded in rare gas jets, transport properties of the gas mixtures and so on. It rises from the experimental difficulties in an accessment of the ground state vibrational levels⁸. To our knowledge, the

direct experiments which aimed to obtain lifetimes of the ground state vibrational levels were performed only for $\text{Ne...Br}_2(X, v=1)^8$. Some lower limits of the $\text{Ne...Cl}_2(X, v=1, 2)$ lifetimes were also estimated from the B -state spectroscopy⁹.

In this letter we present preliminary results on the predissociative lifetimes to the $\text{Ne...Hal}_2(X, v)$ ($\text{Hal} = {}^{35}\text{Cl}, {}^{79}\text{Br}, {}^{127}\text{I}$) complexes obtained within a simple two-dimensional FGR adiabatic model. Inter-molecular potentials appropriate for these calculations were constructed with the help of literature data.

The next section contains the theoretical model formulation. In section III the potential evaluation and final results are described.

II. THEORY

We consider two-degrees-of-freedom Hamiltonian for the experimental T-shaped (C_{2v}) geometry of Ne...Hal_2 complexes. The Ne motion relative to the Hal_2 center-of-mass is restricted within the vector \hat{R} perpendicular to the Hal axis \hat{r} ,

$$H = - \frac{1}{2m} \frac{\partial^2}{\partial r^2} - \frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + U(r, R), \quad (1)$$

where m and μ are corresponding reduced masses. The total potential is assumed to be a sum of atom-atom interactions,

$$U(r, R) = U_r(r) + U_R(R_1) + U_R(R_2), \quad (2)$$

and R_1 , R_2 indicates the Ne-Hal distances. By symmetry, R_1 and R_2 are equal to each other and to

$$R = (R^2 + 1/4r^2)^{1/2}. \quad (3)$$

This relation induces coupling of the \hat{r} and \hat{R} motions in the total potential

$$U(r, R) = U_r(r) + 2U_R[R(r, R)]. \quad (4)$$

The large mismatch of velocities (frequencies) in vibrations along \hat{R} and \hat{r} allows to use the adiabatic approximation, i.e. to represent a total wavefunction in the form

$$\Psi = \psi(r) \cdot \phi(R), \quad (5)$$

where ψ and ϕ are eigenvectors of the appropriate unperturbed Hamiltonian H_0 :

$$H_0 = h_r + h_R \\ = \left(-\frac{1}{2m} \frac{\partial^2}{\partial r^2} + U_r(r) \right) + \left(-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + U_R(R) \right). \quad (6)$$

In what follows we set U_R equal to $2U_R(\bar{r}, R)$; hereafter upper dash indicates an equilibrium value.

Thus, for the initial quasibound state of the complex one has

$$\Psi_{vn} = \psi_v(r) \cdot \phi_n(R) \quad (7)$$

$$h_r \psi_v(r) = E_v \psi_v(r) \quad (8)$$

$$h_R \phi_n(R) = E_n \phi_n(R), \quad (9)$$

where v , n are vibrational quantum numbers for the Hal_2 and vdW stretching motions, respectively.

A final wavefunction for the particular decay channel v' ($v' < v$) is

$$\Psi_{v',\varepsilon} = \psi_{v'}(r) + \phi_{\varepsilon}(R), \quad (10)$$

where ϕ_{ε} is an unbound solution of the Schrödinger equation (9) for h_R at the energy $\varepsilon = E_v + E_n - E_{v'}$. The corresponding partial linewidth is then evaluated within Fermi Golden Rule approximation,

$$\Gamma_{vv'} = \pi | \langle \Psi_{v',\varepsilon} | V | \Psi_{vn} \rangle |^2, \quad (11)$$

where V is a perturbation

$$V = H - H_0 = 2U_R(r,R) - 2U_R(\bar{r},R) \quad (12)$$

Finally, the total linewidth is equal to

$$\Gamma_v = \sum_{v'=0}^{v-1} \Gamma_{vv'}, \quad (13)$$

The approach formulated above may be considered as a numerical version of the early analytical model proposed by Beswick and Jortner for linear complexes¹⁰. Obviously, their correction on the product channel interaction could be also included straightforwardly. However, it seems to be of minor importance for the lower vibrational excitations considered here and has not been taken into account. From the other hand, our model is very close to those which were used for particular complex configurations with the fixed (\hat{r}, \hat{R})

angle in a framework of the adiabatic infinite order sudden approximations to three dimensional dynamics¹¹.

We have solved one-dimensional Schrödinger equations using Numerov algorithm and evaluated two dimensional integrals (11) by modified Simpson 1/3 rule.

III. RESULTS

Potentials

For halogen fragments the RKR potential curves of the $X^1\Sigma_g^+$ state of the halogene molecules were used fragment. In order to obtain a simple functional form which is easily parameterized with experimental data the Ne-Hal interaction was assumed as a Morse potential including the parameters D , α and \bar{R} . To convert the spectroscopic constants to the atom-atom potential parameters we have used a simple procedure. Expanding $2U_{\bar{R}}(r, R)$ in Taylor series in R and r near the equilibrium and keeping only r -independent terms one obtains zeroth-order potential function $U_R^0(R)$ which has a Morse form with the parameters¹²

$$D_R = 2D, \quad \alpha_R = \alpha \bar{r}/\bar{R}, \quad \bar{R} = (\bar{R}^2 - 1/4\bar{r}^2)^{1/2} \quad (14)$$

For vdW stretching vibrations these formulas relate the spectroscopic constants D_R , \bar{R} and α_R (or $\omega_e \chi_e$) with the parameters of atom-atom interaction.

TABLE 1
Ne - Hal Morse Atom-Atom Potential Parameters

Hal ₂		D, cm ⁻¹	α , Å ⁻¹	\bar{R} , Å
Cl ₂	I	36.75	1.71	4.22
	II	39.23	1.60	4.00
	III	35.435	1.92	3.52
Br ₂	I	42.36	1.72	3.684
	II	47.33	1.60	4.179
I ₂	I	42.5	1.49	4.51
	II	48.7	1.427	4.51

Ne...Cl₂

Cl₂(X) RKR potential is given in Ref.12.

The first set (I) of the atom-atom Morse potential parameters was extracted from the multiproperty fit of Ne...Cl₂(X) interaction proposed by Reid et al.¹⁴, while the second set (II) - from the Lennard-Jones potential of Secrest and Eastes¹⁵. However, we interpret it as a reference U_R^0 function in contrast to Ref.10, where it was considered as a pairwise interaction. Our interpretation seems to be more consistent with the averaged nature of this potential¹⁶ and is supported by the similarity of the parameter sets I and II, see table 1.

TABLE 2

Predissociative Lifetimes of $\text{Ne}\dots\text{Hal}_2(\text{X}, v)$ Complexes, s

Hal_2	v	Potential ^{a)}			Exptl.
		I	II	III	
Cl_2	1	$1.86 \cdot 10^{-2}$	$1.61 \cdot 10^{-1}$	$1.04 \cdot 10^{-3}$	$> 10^{-5}$
	2	$7.73 \cdot 10^{-3}$	$6.56 \cdot 10^{-2}$	$4.42 \cdot 10^{-4}$	$> 10^{-5}$
Br_2	1	$9.75 \cdot 10^{-7}$	$2.46 \cdot 10^{-6}$	—	$8 \pm 3 \cdot 10^{-6}$
	2	$4.51 \cdot 10^{-7}$	$1.12 \cdot 10^{-6}$	—	—
I_2	1	$2.64 \cdot 10^{-7}$	$2.82 \cdot 10^{-7}$	—	—
	2	$1.32 \cdot 10^{-7}$	$1.36 \cdot 10^{-7}$	—	—

^{a)} See text for notation and table 1 for parameters.

The calculated lifetimes for $v = 1, 2$ are given in table 2 together with their experimentally determined lower limits⁹.

In addition, we have performed calculations with the third set of parameters (III) originated from the $\text{Ne}\dots\text{Cl}_2(\text{B})$ potential energy surface of Halberstadt et al.⁶ and consisting of the vdW Morse potential modified by anisotropic long-range terms. Three-dimensional calculations for $\text{Ne}\dots\text{Cl}_2(\text{X})$ (only Cl_2 potential was changed relative to the B-state case) result in $9.0 \cdot 10^{-4}$ s lifetime value⁶ which agrees with our estimate for the potential III given in table 2.

Ne...Br₂

RKR potential Br₂(X) is taken from Ref.17.

Two different vdW interactions have been considered. The first one (I) is constructed by with the help of experimental values of the X-state $D_0 = 70.5 \pm 2.0 \text{ cm}^{-1}$, Ref.18, and $R_0 = 3.67 \pm 0.01 \text{ \AA}^{19}$ (subscript "0" indicates the ground vdW vibrational state). The α value has been approximated by that obtained from the Morse fit of the NeKr vibrational sequence²⁰. A simple iterative procedure which utilize the formulas (13) as well as relations connecting the equilibrium values D and \bar{R} with D_0 and R_0 allowed to determine the atom-atom potential parameters listed in table 1. A numerical value for $D_0 = 70.68 \text{ cm}^{-1}$ obtained with this potential indicates that the error of recalculation procedure is less than 0.2 cm⁻¹.

Potential II is those of Secrest and Eastes¹⁵ implemented as described above for Ne...Cl₂.

In table 2 calculated lifetimes are presented with the abovementioned experimental estimate.

Ne...I₂

Ranges for the D_R and α_R values of Ne...I₂(X) were experimentally determined by Blazy et al.²¹. These constants together with the \bar{R} value from Secrest-Eastes potential define the set I of parameters, while the set

II corresponds again to Secrest and Eastes¹⁵, see table 1. RKR curve of I_2 is taken from Ref.22.

To our knowledge, there is no experimental information on VP of $Ne \dots I_2(X)$, so only calculated lifetimes are presented in table 2.

IV. CONCLUSIONS

Restricted two-dimensional quantal model have been used in order to calculate lifetimes of the lowest vibrational levels in the ground electronic states of the vdW complexes formed by the Ne atom with Cl_2 , Br_2 and I_2 molecules. Two different vdW potentials have been systematically tested in these calculations.

Less or more definite comparison with the experimental values is possible only for $Ne \dots Br_2(X, v=1)$. Both potentials give the order-of-magnitude estimates and indicate the validity of the theoretical model. However, predicted lifetimes should grow up within three-dimensional calculations¹¹ so that the more reliable "spectroscopic" potential I which gives some poorer agreement with the experimental data in our model could appear a better one within more accurate calculations.

The lack of experimental data for complexes with Cl_2 and I_2 does not allow to split inaccuracies of the theory and uncertainties of the potentials. We hope

that for these systems the overall agreement is comparable with those achieved in bromine case. Comparison with more accurate theoretical results for the potential III of $\text{Ne} \dots \text{Cl}_2$ gives some proofs for this suggestion.

It should be also noted that the results obtained with the Secrest-Eastes interactions (II) provide a good picture of the qualitative trend of lifetimes in the $\text{Ne} \dots \text{Cl}_2$, Br_2 and I_2 series.

ACKNOWLEDGMENTS

We thank Dr. A.V.Stolyarov for help with Numerov algorithm and useful discussions concerning RKR potentials and A.Baisogolov for assistance.

REFERENCES

1. R.E.Smalley, D.H.Levy and L.Wharton, *J.Chem.Phys.*, **64**, 3266 (1976).
2. M.S.Kim, R.E.Smalley, L.Wharton and D.H.Levy, *J.Chem.Phys.*, **65**, 1216 (1976).
3. D.H.Levy, *Adv.Chem.Phys.*, **47**, 323 (1981).
4. K.C.Janda, *Adv.Chem.Phys.*, **60**, 210 (1985).
5. J.I.Cline, B.P.Reid, D.D.Evard, N.Sivakumar, N.Halberstadt and K.C.Janda, *J.Chem.Phys.*, **89**, 3535 (1988).
6. N.Halberstadt, J.A.Beswick and K.C.Janda, *J.Chem.Phys.*, **87**, 3966 (1987).
7. N.Halberstadt, O.Roncero and J.A.Beswick, *Chem.Phys.*, **129**, 83 (1989).

8. N.Sivakumar, D.D.Evard, J.I.Cline, and K.C.Janda, *Chem.Phys.Lett.*, **137**, 403 (1987).
9. D.E.Brinza, C.M.Western, D.D.Evard, F.Thommen, B.A.Swartz and K.C.Janda, *J.Phys.Chem.*, **88**, 2004 (1984).
10. J.A.Beswick and J.Jortner, *J.Chem.Phys.*, **68**, 2277 (1978).
11. J.A.Beswick and G.Delgado-Barrio, *J.Chem.Phys.*, **73**, 3653 (1980).
12. S.K.Gray, S.A.Rice and D.W.Noid, *J.Chem.Phys.*, **84**, 3745 (1986).
13. J.A.Coxon, *J.Molec.Spectrosc.*, **82**, 264 (1980).
14. B.P.Reid, K.C.Janda and N.Halberstadt, *J.Phys.Chem.*, **92**, 587 (1988).
15. D.Secrest and W.Eastes, *J.Chem.Phys.*, **56**, 2502 (1972).
16. J.O.Hirschfelder, C.F.Curtiss and R.B.Bird. *Molecular Theory of Gases and Liquids*, New York: Wiley, 1954.
17. R.F.Barrow, T.C.Clark, J.A.Coxon and K.K.Yee, *J.Molec.Spectrosc.*, **51**, 428 (1974).
18. J.I.Cline, D.D.Evard, B.P.Reid, N.Sivakumar, F.Thommen and K.C.Janda. In: A.Weber ed. *Structure and Dynamics of Weakly Bound Molecular Complexes*. Dordrecht: Reidel, 1987: 533-551.
19. F.Thommen, D.D.Evard and K.C.Janda, *J.Chem.Phys.*, **82**, 5295 (1985).
20. M.V.Bobetic and J.A.Barker, *J.Chem.Phys.*, **64**, 2367 (1976).
21. J.A.Blazy, B.M.DeKoven, T.D.Russel and D.H.Levy, *J.Chem.Phys.*, **72**, 2439 (1980).
22. R.J.Le Roy, *J.Chem.Phys.*, **52**, 2683 (1970).

Date Received: 09/20/91
Date Accepted: 10/23/91